Sakne (matemātika)
Skaitļa r n-tā sakne ir skaitlis, kuru n reižu reizinot ar sevi pašu, iegūst r. To sauc arī par radikālu vai radikālu izteiksmi. Varētu teikt, ka tas ir skaitlis k, kuram šis vienādojums ir patiess:
k n = r {\displaystyle k^{n}=r}
(lai uzzinātu k n {\displaystyle k^{n}} nozīmi, izlasiet eksponenti.)
Mēs to rakstām šādi: r n {\displaystyle {\sqrt[{n}]{r}}}. . Ja n ir 2, tad radikāļa izteiksme ir kvadrātsakne. Ja tas ir 3, tad tā ir kubiskā sakne.
Piemēram, 8 3 = 2 {\displaystyle {\sqrt[{3}]{8}}}=2}, jo 2 3 = 8 {\displaystyle 2^{3}=8}} . Šajā piemērā 8 sauc par radicandu, 3 sauc par indeksu, un rūtiņas formas daļu sauc par radikāļa simbolu vai radikāļa zīmi.
Saknes un jaudas var mainīt, kā parādīts x a b = x a b = ( x b ) a = ( x a ) 1 b {\displaystyle {\sqrt[{b}]{x^{a}}}=x^{\frac {a}{b}}=({\sqrt[{b}]{x}})^{a}=(x^{a})^{{\frac {1}{b}}}} .
Radikāliskas izteiksmes reizinājuma īpašība ir parādīta a b = a × b {\displaystyle {\sqrt {ab}}={\sqrt {a}}\times {\sqrt {b}}}. .
Radikāliskas izteiksmes kvantienta īpašība ir parādīta a b = a b {\displaystyle {\sqrt {\frac {a}{b}}}}={{\frac {\sqrt {a}}{\sqrt {b}}}} .
Vienkāršošana
Šis ir piemērs, kā vienkāršot radikālu.
8 = 4 × 2 = 4 × 2 = 4 × 2 = 2 2 {\displaystyle {\sqrt {8}}={\sqrt {4\reiz 2}}={\sqrt {4}}\reiz {\sqrt {2}}=2{\sqrt {2}}}
Ja divi radikāļi ir vienādi, tos var apvienot. Tas ir tad, ja abi indeksi un radikāļi ir vienādi.
2 2 + 1 2 = 3 2 {\displaystyle 2{\kvrt {2}}}+1{\kvrt {2}}=3{\kvrt {2}}}}
2 7 3 - 6 7 3 = - 4 7 3 {\displaystyle 2{{\skvrt[{3}]{7}}-6{\skvrt[{3}]{7}}=-4{\skvrt[{3}]{7}}}}.
Šādi var atrast ideālo kvadrātu un racionalizēt saucēju.
8 x x x 3 = 8 x x x x = 8 x = 8 x × x x = 8 x x x 2 = 8 x x x {\displaystyle {\frac {8x}{{{\sqrt {x}}^{3}}}}={{\frac {8{\cancel {x}}}{{{\cancel {x}}{\sqrt {x}}}}={{\frac {8}{\sqrt {x}}}={\frac {8}{\sqrt {x}}} reizes {\frac {\sqrt {x}}{\sqrt {x}}}={\frac {8{\sqrt {x}}}{{{\sqrt {x}}}^{2}}}}={\frac {8{\sqrt {x}}}{x}}}{x}}}}
Saistītās lapas
- Racionalizācija (matemātika)
Jautājumi un atbildes
Jautājums: Kas ir n-tā sakne?
A: Skaitļa r n-tā sakne ir skaitlis, kuru n reižu reizinot ar sevi pašu, iegūst skaitli r.
J: Kā raksta n-to sakni?
A: Skaitļa r n-tā sakne tiek rakstīta kā r^(1/n).
J: Kādi ir daži sakņu piemēri?
A: Ja indekss (n) ir 2, tad radikāliskais izteikums ir kvadrātsakne. Ja tas ir 3, tad tā ir kubiskā sakne. Citas n vērtības apzīmē ar kārtas skaitļiem, piemēram, ceturtā sakne un desmitā sakne.
J: Ko nosaka radikāliskas izteiksmes reizinājuma īpašība?
A: Radikāliskās izteiksmes reizinājuma īpašība nosaka, ka sqrt(ab) = sqrt(a) x sqrt(b).
J: Ko nosaka radikāliskas izteiksmes koeficienta īpašība?
A: Radikālās izteiksmes kvota īpašība nosaka, ka sqrt(a/b) = (sqrt(a))/(sqrt(b)), kur b != 0.
J: Kādus citus terminus var izmantot, lai apzīmētu n-to sakni?
A: N-to sakni var saukt arī par radikālu vai radikālu izteiksmi.