Ģeometrija
Ģeometrija ir matemātikas daļa, kas pēta lietu izmērus, formas, novietojumu un dimensijas. Mēs varam redzēt vai veidot tikai plakanas (2D) vai cietas (3D) figūras, bet matemātiķi (cilvēki, kas studē matemātiku) spēj pētīt 4D, 5D, 6D utt. figūras.
Kvadrāti, apļi un trijstūri ir vienas no vienkāršākajām figūrām plakanajā ģeometrijā. Kubi, cilindri, konusi un sfēras ir vienkāršas figūras cietajā ģeometrijā.
Izmanto
Ar plakano ģeometriju var izmērīt plakanas figūras laukumu un perimetru. Ar plakanu ģeometriju var izmērīt arī cietas figūras tilpumu un virsmas laukumu.
Ģeometriju var izmantot, lai aprēķinātu daudzu lietu lielumu un formu. Piemēram, ģeometrija var palīdzēt cilvēkiem atrast:
Izcelsme
Ģeometrija ir viena no senākajām matemātikas nozarēm. Ģeometrija aizsākās kā zemes mērīšanas māksla, lai to varētu taisnīgi sadalīt starp cilvēkiem. Vārds "ģeometrija" cēlies no grieķu vārda, kas nozīmē "mērīt zemi". Tā ir kļuvusi par vienu no svarīgākajām matemātikas daļām. Grieķu matemātiķis Eiklīds sarakstīja pirmo grāmatu par ģeometriju, grāmatu ar nosaukumu "Elementi".
Neeiklīda ģeometrija
Plaknes un cietvielu ģeometrija, kā to aprakstījis Eiklīds savā mācību grāmatā Elementi, tiek saukta par "Eiklīda ģeometriju". Gadsimtiem ilgi to sauca vienkārši par "ģeometriju". 19. gadsimtā matemātiķi radīja vairākus jaunus ģeometrijas veidus, kas mainīja Eiklīda ģeometrijas noteikumus. Šos un iepriekšējos veidus sauca par "neeiklīda" (ne Eiklīda radītajiem). Piemēram, hiperboliskā ģeometrija un eliptiskā ģeometrija radās, mainot Eiklīda paralēles postulātu.
Neeiklīda ģeometrija ir sarežģītāka par Eiklīda ģeometriju, taču tai ir daudz pielietojumu. Piemēram, sfērisko ģeometriju izmanto astronomijā un kartogrāfijā.
Piemēri
Ģeometrija sākas ar dažām vienkāršām idejām, kas tiek uzskatītas par patiesām, tās sauc par aksiomām. Piemēram:
- Punkts uz papīra tiek attēlots, pieskaras tam ar zīmuli vai pildspalvu, neveicot nekādas kustības uz sāniem. Mēs zinām, kur atrodas punkts, bet tam nav izmēra.
- Taisnā līnija ir īsākais attālums starp diviem punktiem. Piemēram, Sofija velk auklas gabaliņu no viena punkta uz citu punktu. Taisnā līnija starp abiem punktiem būs taisna, un tā būs taisna, kas savieno šos divus punktus.
- Plakne ir plakana virsma, kas neapstājas nevienā virzienā. Piemēram, iedomājieties sienu, kas stiepjas visos virzienos bezgalīgi.
Saistītās lapas
- Topoloģija
Jautājumi un atbildes
J: Kas ir ģeometrija?
A: Ģeometrija ir matemātikas nozare, kas nodarbojas ar objektu izmēru, formu, novietojumu un izmēriem.
J: Kāda veida figūras mēs varam redzēt vai izveidot?
A: Mēs varam redzēt vai veidot tikai plakanas (2D) vai cietas (3D) figūras.
J: Kas spēj pētīt formas, kas nav 3D?
A: Matemātiķi (cilvēki, kas studē matemātiku) spēj pētīt formas, kas ir 4D, 5D, 6D utt.
J: Kādi ir vienkāršu figūru piemēri plakanajā ģeometrijā?
A: Kvadrāti, apļi un trijstūri ir dažas no vienkāršākajām figūrām plakanajā ģeometrijā.
J: Kādi ir daži vienkāršu figūru piemēri cietajā ģeometrijā?
A: Kubi, cilindri, konusi un sfēras ir vienkāršas figūras cietajā ģeometrijā.
J: Vai mēs varam redzēt vai izveidot figūras, kas nav trīsdimensiju figūras?
A: Nē, mēs nevaram redzēt vai izveidot figūras, kas ir ārpus 3D, bet matemātiķi spēj tās pētīt un iztēloties.
J: Kāda ir atšķirība starp plakano un cieto ģeometriju?
A: Plakanā ģeometrija aplūko 2D formas, bet cietā ģeometrija aplūko 3D formas.